महावीराचार्य

Mahaviracharya


Mahaviracharya was a great Bhartiya Jain Mathematician of the Ninth-Century. He was born in kundalpur , in IndiaHe was patronised by the  राष्ट्रकूट Rashtrakuta king  अमोघवर्ष प्रथमAmoghavarsha The First. He did very remarkable work on  क्रमचय-संचय combinatorics and was the first in the world to present the generalized formula to calculate the number of क्रमचयों permutations and संचयों combinations. He authored गणितसारसंग्रहाGaṇitasārasan̄graha (Ganita Sara Sangrahain 850AD in which many topics of algebra  बीजगणित  and ज्यामिति  geometry are discussed.    पावुलूरि मल्लन Pavuluri Mallan translated this treatise into Telugu under the name 'सारसंग्रह गणितम्' 'Sarasanghara Gnatham'. He separated astrology from mathematics. It is the earliest Indian text entirely devoted to mathematics. He expounded on the same subjects on which Aryabhata and Brahmagupta contended, but he expressed them more clearly. His work is a highly syncopated approach to algebra and the emphasis in much of his text is on developing the techniques necessary to solve algebraic problems. He is highly respected among Indian mathematicians, because of his establishment of terminology for concepts such as equilateral, and isosceles triangle; rhombus; circle and semicircle. His eminence spread throughout South India and his books proved inspirational to other mathematicians in Southern India.

He discovered Important formulas and Identities

a^3 = a (a + b) (a − b) + b^2 (a − b) + b^3
nC =  [n (n − 1) (n − 2) ... (n − r + 1)] / [r (r − 1) (r − 2) ... 2 * 1]

 He devised a formula which approximated the area and perimeters of ellipses and found methods to calculate the square of a number and cube roots of a number. He asserted that the square root of a negative number does not exist.

He named Big Numbers 

Numbers

NamesNumbersNames

Numbers

Names

Numbers

Names
10^1दशं10^2शतं10^3सहस्रं10^4दशसहस्रं
10^5लक्षं10^6दशलक्षं10^7कोटि10^8दशकोटि
10^9शतकोटि10^10अर्बुदं10^11न्यर्बुदं10^12खर्‌व्वं
10^13महाखर्‌व्वं10^14पद्मं10^15महापद्मं10^16क्षोणि
10^17महाक्षोणि10^18शंखं10^19महाशंखं10^20क्षिति
10^21महाक्षिति10^22क्षोभं10^23महाक्षोभं
[Names are , obviously , in Sanskrit.]

He gave Rules for Decomposing Fractions

His Gaṇita-sāra-saṅgraha गणितसारसंग्रहा gave systematic rules for expressing a fraction as the sum of unit fractionsThis follows the use of unit fractions in Indian mathematics in the Vedic period, and the Śulba Sūtras' giving an approximation of 2 equivalent to .
The following rule is given to express 1 as the sum of unit fractions.

रूपांशकराशीनां रूपाद्यास्त्रिगुणिता हराः क्रमशः।
द्विद्वित्र्यंशाभ्यस्ताव आदिमचरमौ फले रूपे ॥ (गतिणसारसंग्रह कलासवर्ण ७५)

Translation to Hindi :  जब फल  १ हो तो १ अंश वाले भिन्न, जिनके हर १ से शुरू होकर क्रमशः ३ से गुणित होते जायेंगे। प्रथम और अन्तिम को (क्रमशः) २ तथा २/३ से गुणा किया जायेगा।

Translation to English : When the result is 1, then fractions with 1 degree, whose denominators start at 1 and will be multiplied by 3 respectively. The first and last will be multiplied by (respectively) 2 and 2/3.    

  • To express 1 as the sum of an odd number of unit fractions (Gaṇita-sāra-saṅgraha  गणितसारसंग्रहा kalāsavarṇa कलासवर्ण: 77):
 
  • To express a unit fraction  as the sum of n other fractions with given numerators  (Gaṇita-sāra-saṅgraha  गणितसारसंग्रहा kalāsavarṇa कलासवर्ण:78, examples in 79):
  • To express any fraction  as a sum of unit fractions (Gaṇita-sāra-saṅgraha  गणितसारसंग्रहा kalāsavarṇa कलासवर्ण:80, examples in 81):
Choose an integer i such that  is an integer r, then write
and repeat the process for the second term, recursively.
  • To express a unit fraction as the sum of two other unit fractions (Gaṇita-sāra-saṅgraha  गणितसारसंग्रहा kalāsavarṇa कलासवर्ण: 85, example in 86):
 where  is to be chosen such that  is an integer (for which  must be a multiple of ).
  • To express a fraction  as the sum of two other fractions with given numerators  and  (Gaṇita-sāra-saṅgraha  गणितसारसंग्रहा kalāsavarṇa  कलासवर्ण: , example in 88):
 where  is to be chosen such that  divides 

He Gave formula for high order equations


Mahavir presented the solution of the following types of equations of n degree and higher order. The name of the second chapter of  गणितसारसंग्रह Ganitsaarsangraha is कलासवर्ण: Kala-Savarna-Varana (the operation of the reduction of fractions). 
  and 

He gave Formula of cyclic quadrilateral

Aditya and (before him) Brahmagupta had highlighted the merits of cyclic quadrilaterals. After this, Mahavira gave equations to find the length of the sides and diagonals of cyclic quadrilaterals.

If a, b, c, d are the sides of a cyclic quadrilateral and the lengths of its diagonals are x and y, then

and

Hence ,